
Stability of Dual Solutions in Boundary Layer Flow and Heat Transfer 
on a Moving Plate in a Copper-Water Nanofluid with Slip Effect 

 
NORFIFAH BACHOK, NAJWA NAJIB, NORIHAN MD. ARIFIN & NORAZAK SENU 

Department of Mathematics and Institute for Mathematical Research 
Universiti Putra Malaysia 

43400 UPM Serdang, Selangor 
MALAYSIA 

norfifah78@yahoo.com    http://www.upm.edu.my 
 
 
Abstract: - An analysis is performed to study the flow and heat transfer characteristics on a moving plate in a 
nanofluid. The governing nonlinear differential equations are transformed into a system of nonlinear ordinary 
equations using a similarity transformation which is then solved numerically using a shooting method. While, 
for the stability analysis, the unsteady problem has to be introduced by introducing new dimensionless time 
variable which is then solved numerically using solver bvp4c. The numerical results are presented in tables and 
graphs for the skin friction coefficient and the local Nusselt number as well as the velocity and the temperature 
profile for a range of various parameters such as nanoparticles volume fraction, first order slip parameter and 
velocity ratio parameter. It is observed that the skin friction coefficient and the local Nusselt number which 
represents the heat transfer rate at the surface are significantly influenced by these parameters. The results 
indicate that dual solutions (first and second solutions) exist when the plate and free stream move in the 
opposite direction. A stability analysis has been performed to show which solutions are stable and physically 
realizable. Based on the analysis, the results indicate that the first solution is linearly stable, while the second 
solution is linearly unstable. 
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1 Introduction 

Nowadays, nanofluid has become one of the most 
important subjects of research due to its numerous 
applications in engineering and biomedical area. 
Some kind of the applications are heat exchangers, 
automotive cooling applications, electronic cooling 
and in nano drug delivery. Choi [1] is the first who 
discovered the term nanofluid in the real world. In 
the study, he found that the addition of a small 
amount (< 1% volume fraction) of nanoparticles to 
conventional heat transfer fluid enhance the thermal 
conductivity of the fluid twice. Nanofluid is a 
fluid that contained nanometer-sized particles, 
called nanoparticles. This type of fluid shows 
significant enhancement of their properties. The 
convectional heat transfer fluid like water, ethylene-
glycol and mineral oil has low thermal conductivity 
which inadequate to satisfy the qualification for the 
cooling rate. Hence, nanoscale particles are 
dispersed in a base fluid in order to form a 
nanofluid, which later used as an alternative option 
to enhance the heat transfer of such fluids.  Recent 
years, many works featuring nanofluid have been 
found in the literature. The pioneering work on the 
boundary layer flow of a nanofluid over a moving 

plate has been studied by Bachok et al. [2]. The 
problem later was continued by Rohni et al. [3] and 
Bachok et al. [4] with a different nanofluid model 
which proposed by Tiwari and Das [5]. Later, 
Mabood et al. [6], Sheremet et al. [7] and Shaw et 
al. [8] considered a new aspect of studies involving 
nanofluid. 

Couples years back, the researchers start to 
performed and analyzed the results which have dual 
or multiple solutions in order to conclude that the 
first solution is stable and physically relevant. The 
papers consisted of stability analysis in their study 
such as Mahapatra and Nandy [9], Merkin [10], 
Weidmen et al. [11], Ishak [12] and Merill et al. 
[13]. The objective of the present paper is to extend 
the work by Bachok et al. [4] with slip effect. The 
effects of the selected parameters and behavior of 
the slip condition will be studied numerically and 
the stability of dual solutions is performed to proof 
the first solution is in stable state while the second 
solution is unstable. 

2 Problem Formulation 
Consider a two-dimensional laminar boundary layer 
flow on a fixed or continuously moving flat surface 
in a water-based nanofluid containing copper (Cu) 

WSEAS TRANSACTIONS on FLUID MECHANICS
Norfifah Bachok, Najwa Najib, 

Norihan Md. Arifin, Norazak Senu

E-ISSN: 2224-347X 151 Volume 11, 2016



nanoparticles. It is assumed that the plate moves in 
the same or opposite direction to the free stream, 
both with constant velocities. The nanoparticles are 
assumed to have a uniform spherical shape and size. 
The boundary layer equations are given by Bachok 
et al. [4]: 
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where wU  and U∞  are constants and correspond to 
the plate velocity and the free stream velocity, 
respectively. Further, u  and v  are the velocity 
components along the x −  and y −  directions, 
respectively, L denotes the slip length, T  is the 
temperature of the nanofluid, nfµ  is the viscosity of 
the nanofluid, nfα  is the thermal diffusivity of the 
nanofluid and nfρ  is the density of the nanofluid, 
which are given by (Oztop and Abu-Nada [14]) 
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Here, ϕ  is the nanoparticle volume fraction, 

( )p nf
Cρ  is the heat capacity of the nanofluid, nfk  is 

the thermal conductivity of the nanofluid, fk  and 

sk  are the thermal conductivities of the fluid and of 
the solid fractions, respectively, and fρ  and sρ  are 
the densities of the fluid and of the solid fractions, 
respectively. The use of the above expression for 

fnf kk /  is restricted to spherical nanoparticles 
where it does not account for other shapes of 
nanoparticles [14,15]. Also, the viscosity of the 
nanofluid nfµ  has been approximated by Brinkman 

[16] as viscosity of a base fluid fµ  containing 
dilute suspension of fine spherical particles. 

To obtain similarity solutions for the system of 
Eqs. (1) – (4), we introduce the following similarity 
variables 
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where U  is the composite velocity defined as 
∞+UUU w= . This definition of U  was first 

introduced by Afzal et al. [17]. Further, ψ  is the 
stream function defined as = /u yψ∂ ∂  and 

= /v xψ−∂ ∂ , which identically satisfies Eq. (1). 
Employing the similarity variables (6), Eqs. (2) and 
(3) reduce to the following ordinary differential 
equations: 
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subjected to the boundary conditions (4) which 
become  
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( ) 1 , ( ) 0 asf η λ θ η η′ → − → →∞ .    (9) 

 
In the above equations, primes denote 

differentiation with respect to η , Pr  (= / )f fν α  is 
the Prandtl number and λ  is the velocity ratio 
parameter defined as  

= wU
U

λ .              (10) 

and the slip parameter is defined as  
1/2

f

ULU
x

σ
ν
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               (11) 

The case 1<<0 λ  is when the plate and the 
fluid move in the same direction, while they move 
in the opposite directions when 0<λ , and when 

1>λ . If 0<λ , the free stream is directed towards 
the positive −x direction, while the plate moves 
towards the negative −x direction. If 1>λ , the 
free stream is directed towards the negative 
−x direction, while the plate moves towards the 

positive −x direction. However, in this paper we 
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consider only the case 1≤λ , i.e. the direction of the 
free stream is fixed (towards the positive 
−x direction). It is worth mentioning that the 

present problem reduces to those considered by 
Ahmad et al. [18] when 0λ =  and 1λ = . Further, 
without the energy equation and when 0ϕ =  
(regular fluid), the present problem reduces to those 
of Blasius [19] when 0λ = , and to those of Sakiadis 
[20] when 1λ = .  

The physical quantities of interest are the skin 
friction coefficient fC  and the local Nusselt 

number xNu , which are defined as 

2= , = ,
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where the surface shear stress wτ  and the surface 
heat flux wq  are given by  
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with nfµ  and nfk  being the dynamic viscosity and 
thermal conductivity of the nanofluids, respectively. 
Using the similarity variables (6), we obtain 
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where = /x fRe Ux ν  is the local Reynolds number. 

 
3 Stability Analysis 
In order to perform a stability analysis, we consider 
the unsteady problem. Eq. (1) holds, while Eqs. (2) 
and (3) are replaced by   
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where t denotes the time. Based on the variables (6), 
we introduce the following new dimensionless 

variables: 
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so that Eqs. (2) and (3) can be written as  
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To test the stability of the steady flow solution 
0( ) ( )f fη η=  and 0( ) ( )θ η θ η=  satisfying the 

boundary value problem (1) – (4), we write  
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where γ is an unknown eigenvalue, and  ( ),F η τ  

and ( ),G η τ  are small relative to 0 ( )f η  and ( )0θ η . 
Solutions of the eigenvalue problem (19) – (21) give 
an infinite set of eigenvalues 1 2 ...γ γ< <  ; if the 
smallest eigenvalue is negative, there is an initial 
growth of disturbances and the flow is unstable but 
when 1γ  is positive, there is an initial decay and the 
flow is stable. Introducing (22) into (19) and (20), 
we get the following linearized problem  
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The solutions 0( ) ( )f fη η=  and 0( ) ( )θ η θ η=  of the 
steady equations (7) and (8) are obtained by setting 

0.τ =  Hence 0( ) ( )F Fη η=  and 0( ) ( )G Gη η=  in 
(23) and (24) identify initial growth or decay of the 
solution (22). In this respect, we have to solve the 
linear eigenvalue problem  
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along with the new boundary conditions   
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It should be stated that for particular values of Pr 
and γ, the stability of the corresponding steady flow 
solutions ( )0f η  and ( )0θ η  are determined by the 
smallest eigenvalue γ. As it has been suggested by 
Harris et al. [21], the range of possible eigenvalues 
can be determined by relaxing a boundary condition 

on ( )0F η  or ( )0G η . For the present problem, we 
relax the condition that 0 '( ) 0F η →  as η →∞  and 
for a fixed value of γ we solve the system (26, 27, 
28) along with the new boundary 
condition 0 ''(0) 1F = . 

 
4 Results and Discussion 
Numerical solutions to the governing ordinary 
differential equations (7) and (8) with the boundary 
conditions (9) are obtained using shooting method 
in Maple software. The dual solutions are obtained 
by setting different initial guesses for the missing 
values of the skin friction coefficient ( )0f ′′  and the 
local Nusselt number ( )0'θ− , where all profiles 
satisfy the far field boundary conditions (9) 
asymptotically but with different shapes of profiles 
and then being illustrated in graphs. 
  Figures 1 and 2 illustrate the variation of skin 
friction ( )0f ′′ and local Nusselt number  ( )0'θ−  for 
different values of first order slip parameter σ. The 
variations of  λ c has been shown in Table 2. From 
the figures and table, when no slip (σ = 0) occur in 
between the boundary layer, the result will be equal 
to Bachok et al. [4]. Thus, our computational results 
are in good agreement with the previous researches 
and hence prove that other solutions are correct. 
When the slip occur in between the boundary layer, 
the boundary layer separation is drag to happen and 
hence the λc will become larger (if σ > 0 ). The skin 
friction coefficient and the heat loss from the 
surface will increases as the slip parameter σ is 
increasing. Therefore, the presence of slip will 
accelarates the separation of the boundary layer.  
 The variations of the skin friction coefficient 

( )0f ′′  and the local Nusselt number ( )0'θ−  for 
Cu-water for different values of nanoparticle 
volume fraction φ were shown in Figs. 3 and 4, 
respectively. It is seen that the solution is unique 
when 0λ ≥ , while multiple (dual) solution exist up 
to 0cλ λ< < , where the plate and free stream moves 
in the opposite direction. However, no solutions are 
found to exist when cλ λ> . From the figures, as the 
nanoparticles volume fraction φ is increasing, then 
the skin friction coefficient and heat transfer rate at 
the surface will increased.  
 The validity of these numerical solutions and 
dual nature solutions is supported by the velocity 
and temperature profiles presented in Figs. 5 – 10. 
These profiles are satisfied the boundary conditions 
(9) assymptotically with different shapes of graphs. 
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The solid line represents the first solution while the 
dash line represents second solution. As we can see, 
the boundary layer thickness for second solution 
will always greater then the first solution. 
 A stability analysis is performed using bvp4c 
function in Matlab software to determine which 
solution is stable (first or second solution). The 
linear eigenvalue problem (26) and (27) is used to 
find the unknown eigenvalue γ subjected to the new 
boundary condition (28). If the smallest eigenvalue 
is negative, there is an initial growth of disturbance 
and the flow is unstable while for the positive 
smallest eigenvalue, there is an initial decay and the 
flow is stable. The smallest eigenvalue γ for some 
values of σ at selected values of λ are stated in Table 
3 which shows that γ is positive for the first solution 
and negative for second solution. The eigenvalue γ 
is approaching 0 as λ is approaching λc (γ→0 as λ→ 
λc) either from positive or negative sign. Thus, the 
first solution is stable, while the second solution is 
unstable.  
 
 
 

Table 1. Thermophysical properties of fluid and    
nanoparticles (Oztop and Abu-Nada, [14]). 

Physical 
properties 

Fluid phase 
(water) Cu  

pC (J/kg K)  4179 385 
3(kg/m )ρ  997.1 8933 

(W/mK)k  0.613 400 
7 210 (m /s)α ×  1.47 11163.1 

510 (1/K)β −×  21 1.67 

 

 

 

Table 2. Variations of λc with φ = 0.1 for different 
values of σ. 

σ Bachok et al. [4] Present Result 
0 -0.5482 -0.5482 

0.2  -0.6821 
0.4  -0.8999 

 

Fig. 1. Skin friction coefficient ( )0f ′′  as a 
function of λ for various values of σ. 

 

Fig. 2. Wall temperature gradient ( )0'θ−  
as a function of λ for various values of σ. 

 

Fig. 3. Skin friction coefficient ( )0f ′′  as a function 
of λ for various values of φ. 
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Fig. 4. Wall temperature gradient ( )0'θ−  as a 
function of λ for various values of φ. 

 

Fig. 5. Velocity profiles '( )f η  for various 
of σ. 

 

Fig. 6. Temperature profiles ( )θ η for 
various of σ. 

Fig. 7. Velocity profiles '( )f η  for several values of 
φ. 

 

Fig. 8. Temperature profiles ( )θ η  for 
several values of φ. 

 

Fig. 9. Velocity profiles '( )f η  for various of λ. 
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Fig. 10. Temperature profiles ( )θ η for various of λ. 
 
 
 
 
Table 3. Smallest eigenvalues γ at selected values 
of λ for φ = 0.1 and σ = 0, 0.2 and 0.4 
 

σ λ  
Present result 

First 
Solution 

Second 
Solution  

0 -0.54 
-0.52 

0.0406 
0.0788 

-0.0350 
-0.0597 

  -0.5 0.1059 -0.0733 
  -0.4 0.1992 -0.0982 
  -0.3 0.2662 -0.0949 

0.2 -0.68 0.0186 -0.0175 
 -0.64 0.0901 -0.0689 
 -0.6 0.1299 -0.0884 
 -0.5 0.2018 -0.1085 
 -0.4 0.2569 -0.1097 

0.4 -0.89 0.0375 -0.0342 
  -0.85 0.0879 -0.0712 
  -0.8 0.1278 -0.0938 
  -0.7 0.1862 -0.1168 
 -0.6 0.2320 -0.1253 

 
  
 
 
 
 
 
 
 

 
5 Conclusion 
This paper considers the steady boundary layer flow 
and heat transfer on a moving plate in Cu-water 
nanofluid with presence of slip effect. The stability 
analysis is also performed to determine which 
solution is stable an unstable. The effects of 
nanoparticle volume fraction φ and first order slip 
parameter σ on skin friction coefficient and heat 
transfer rate at the surface were investigated and 
discussed. The results indicate that the presence of 
slip parameter σ will widen the range of velocity 
ratio parameter λ. Lastly, the first solution is linearly 
stable and can be realize physically while the second 
solution is linearly unstable and would not be realize 
physically.  
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